Learning Visibility for Robust Dense Human Body Estimation

نویسندگان

چکیده

AbstractEstimating 3D human pose and shape from 2D images is a crucial yet challenging task. While prior methods with model-based representations can perform reasonably well on whole-body images, they often fail when parts of the body are occluded or outside frame. Moreover, these results usually do not faithfully capture silhouettes due to their limited representation power deformable models (e.g., representing only naked body). An alternative approach estimate dense vertices predefined template in image space. Such effective localizing within an but cannot handle out-of-frame parts. In this work, we learn estimation that robust partial observations. We explicitly model visibility joints x, y, z axes separately. The x y help distinguishing cases, depth axis corresponds occlusions (either self-occlusions by other objects). obtain pseudo ground-truths labels UV correspondences train neural network predict along coordinates. show serve as 1) additional signal resolve ordering ambiguities self-occluded 2) regularization term fitting predictions. Extensive experiments multiple datasets demonstrate modeling significantly improves accuracy estimation, especially for partial-body cases. Our project page code at: https://github.com/chhankyao/visdb.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust estimation of human body kinematics from video

This paper addresses the problem of estimating the human body motion from video. Its main contribution is the introduction of a new robust optimization framework that leads to reliable and accurate body tracking and posture recovery. The proposed approach is resistant to occlusions and demonstrates that it is possible to treat different problems arising in human motion analysis in a unified way...

متن کامل

Combining Human Body Shape and Pose Estimation for Robust Upper Body Tracking Using a Depth Sensor

Rapid and accurate estimation of a person’s upper body shape and real-time tracking of the pose in the presence of occlusions is crucial for many future assistive technologies, health care applications and telemedicine systems. We propose to tackle this challenging problem by combining data-driven and generative methods for both body shape and pose estimation. Our strategy comprises a subspace-...

متن کامل

Robust underwater visibility parameter.

We review theoretical models to show that contrast reduction at a specific wavelength in the horizontal direction depends directly on the beam attenuation coefficient at that wavelength. If a black target is used, the inherent contrast is always negative unity, so that the visibility of a black target in the horizontal direction depends on a single parameter only. That is not the case for any o...

متن کامل

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Optical-flow estimation of dense motion field using robust techniques

In recent years, interest in motion analysis has increased with advances in processing capabilities. The usual input in a motion analysis system is an image sequence, with a corresponding increase in the amount of processed data. A typical motion problem is to analyze the motion within 2D image data corresponding to a sequence of frames, of a 3D scene. In computer vision a number of techniques ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2022

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-19769-7_24